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Kinetic Electron Closures for Electromagnetic Simulation -- Outline          

1. A practical algorithm for particle simulation of electromagnetic drift-wave
turbulence and transport with kinetic ions and electrons when electrons are
nearly adiabatic.

2. Examples – Simulations of kinetic shear Alfvén waves, and collisionless drift
wave and ion-temperature-gradient instabilities at finite β in a two-dimensional
unsheared slab.  This hybrid algorithm fails in a sheared slab.

3. Extension to toroidal flux-tube algorithm

4. Summary --

-Successful particle simulations of shear-Alfvén waves and   
electromagnetic drift-wave and ITG instabilities with kinetic electrons for
βm mi e/ >1 (hot core plasmas) in slab.  

-Sheared slab and toroidal implementations with mode rational surfaces fail
because alogorithm does not give correct physics in electron resonance layers.

Related work within the SciDAC Plasma Microturbulence Project: continuum
methods -- GS2 by W. Dorland, et al., and GYRO by Waltz and Candy; particle
methods -- Z. Lin and L. Chen, W. Lee.
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How to Accommodate βmi/me>>1 ? -- Hybrid II Electromagnetic Algorithm     

• Extend the “massless” electron hybrid model of Parker, et al. and P. Snyder
(Ph.D. thesis, Princeton U., 1999) to include drift-kinetic electrons.

• Consider the modified electron momentum equation (Ohm’s law) in slab
geometry:
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Hybrid II Electromagnetic Algorithm (cont’d)                                          

• With updated A|| use Ampere’s law to determine parallel electron current:
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• Determine the electric potential φ  from the quasineutrality relation using the
updated electron and gyrokinetic ion densities

• Advance the gyrokinetic ions and the drift-kinetic electrons with same ∆t.

• From drift-kinetic equation for electrons with split-weights (after cancellations),
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Hybrid II δf Algorithm – Improved Shear Alfvén-Wave Simulations           

• Simulations of kinetic shear-Alfvén waves in slab.
Parameters: kyρs= π/8, Te=Ti, By/B0=0.01,ρs=2∆y, 32x32 grid, (0,1) mode
 theory - - -   simulation results: o = Re /ω Ωi  , ∗ = − Im /ω Ωi Landau dpg. rate

• No restriction on ωpe∆y/c and results are similar to Z. Lin and L. Chen’s 2001
reported results.  (As βe i em m/ → 0 the algorithm fails and goes unstable.)
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Extended Hybrid II δf Algorithm – Collisionless Drift-Wave Slab Simulations  

• δf  slab simulations of collisionless drift-wave instability with no magnetic  shear.
Parameters: kyρs= π/4, ρs/Ln= 0.2, Te=Ti, By/B0=0.01, ρs=2∆y, 16x16 grid, and (0,1) mode,
theory (J. Cummings Ph.D. thesis) - - -,
o= standard δf  simulation,        ∗  = extended Hybrid II code with kinetic electrons.

• The Hybrid II algorithm gives good results for βm mi e >1 and any skin depth, while the
standard δf  simulation fails except for βm mi e ≤ 1 and ∆y<c/ωpe.
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Hybrid II Code – Slab ITG Instability Accurate for βmi/me>1                   

• 2D Hybrid II simulations of shearless ITG accurate for βm mi e >1
and no constraint on the skin depth, i.e., c/ωpe  relative to the cell size ∆x.
Accommodates finite ηe.

• 2D slab simulations with no shear, θ=0.01, Te=Ti, η i =ηe=4, ρs/Ln=0.1, Ωe/ωpe=1,
mi/me=1836, ρs=2∆x, 32×32 grid.  Frequency and growth rates for the (0,1)

mode (ky sρ π≈ / 8) vs. βe =(ωpe∆x/ c)2(ρs/∆x)2(me/mi)(ωpe/Ωe)
2

theory (- - -) (J. Cummings, Ph.D. Thesis, 1995) (±10% error bars in obs. Re ω)
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Hybrid II Code – Shear-Alfvén Instability for βmi/me<1                         

• Consider the consequences of the explicit backward differencing of the inertia
term in the Ohm’s law, which leads to a numerical instability at low β:
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Hybrid II Code – Implicit Solution of u||e to Improve Numerical Stability        

• If we Introduce implicit time differencing of u||e in the electron inertia term in
Ohm’s law, then
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• However, the hybrid algorithm will remain poorly posed as β → 0 because of the
presence of A|| and use of Ampere’s law which becomes a statement of 0=0.
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Hybrid II Has Trouble with Sheared-Slab Electron Resonant Response      
• The Hybrid II algorithm uses a perturbation expansion around an adiabatic fluid representation for the

electron response.  In a sheared slab near a mode rational surface, the electron response transitions
from hydrodynamic to adiabatic locally in space (with an intermediate region where kinetic corrections
are not perturbative).  The following sheared slab ITG results illustrate the failure of the algorithm.
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Hybrid II Sheared-Slab Simulation:  Example Suite #2 (unresolved electron layer)  
• The Hybrid II simulation suite addressing a sheared slab.  If we deliberately do not resolve the layer

near the mode rational surface where the electron response transitions from hydrodynamic to
adiabatic locally in space, what happens to the simulation results?  The following sheared slab ITG
results indicate that the algorithm produces systematic errors when there are kinetic electrons. T
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Hybrid II Sheared-Slab Simulation:  Example Suite #3                                        
• The Hybrid II simulation suite addressing a sheared slab.  Here we resolve the electron resonance

layer near the mode rational surface by using a smaller mass ratio: m
i
/m

e
=400.  These sheared-slab

ITG results indicate that Hybrid II again produces systematic errors when there are kinetic electrons.
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Hybrid II Sheared-Slab Simulation:  Example Suite #3    (cont’d)                      

• The Hybrid II simulation produces a systematic error in the electron resonance
layer leading to anomalously large electron weights.

• Compare electron and ion weights in unsheared and sheared slab simulations
for ITG.  The electron weights |We|~ 10|Wi| in the sheared case.

 Te=Ti, η i =ηe=4, ρs/Ln=0.05, Ls/Ln=200, Ωe/ωpe=1, mi/me=400, ρs=∆x, 128×32 grid, imasse=1

Unsheared ITG (saturated regime with |We|~|Wi|)

Sheared ITG (linear regime with |We|~10|Wi|)
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Hybrid II Algorithm Breaks Near Mode Rational Surfaces                           

•  Hybrid II algorithm (and Lin-Chen) is predicated on a perturbative expansion of the
electrons relative to their adiabatic fluid response:
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•  2 significant errors in electron physics description in electron resonant layers.
 (1) When ωωωω>>k||ve, dominant terms in Ohm's law are electron inertia and parallel
electric field force, and parallel pressure is a correction. Iterating inertia term as an
explicit correction to an adiabatic response is grossly in error.
(2) The lowest-order fluid solution of fluid equations (sans kinetic increment) used
in algebraic reduction of dWe/dt electron weight evolution equation is invalid, and
the electron kinetic correction he to the perturbed electron distribution when
integrated over velocity space is NOT small compared to δδδδn(0) (the lowest-order
fluid approximation).
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-Anomalous growth of the electron weights, Alfvénic noise, and lack of finite-ββββ
stabilization observed in ITG simulations in sheared slab and toroidal simulations
are probable manifestations of the Hybrid II algorithm breaking.
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Toroidal Flux-tube Implementation of the Hybrid II Algorithm                 

• Determine the parallel electric field from the modified electron momentum

equation (Ohm’s law) including toroidicity (ref: P. Snyder and G. Hammett)
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Hybrid II Toroidal Electromagnetic Algorithm (cont’d)                                          

• Determine the electric potential φ  from the quasineutrality relation using the
updated electron and gyrokinetic ion densities:
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• Use flux-tube coordinates:  x=r-r0,  y=( r0/q0)(qθ-ζ),  z=q0R0θ
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Initial Comparison Run of Toroidal Hybrid II and GEM Codes                        

• Toroidal ITG simulations with 32x32x32 grid, β=5x10-4, ηι=3.5, q0=1.4, kinetic electrons

and ions, mi/me=1837, comparing GEM (conventional low-β code) to toroidal Hybrid II

preliminary results.  Toroidal Hybrid II results are dubious.  Electric fields look reasonable,

but the thermal and particle fluxes and total energy in Hybrid II simulation are too large.
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3D Slab Hybrid II Simulations With and Without Kinetic Electrons Codes  

• 3D Slab ITG simulations with 32x32x32 grid, β=2.5x10-3, ηι=5, tor=0, mi/me=400,

comparing hybrid simulation (fluid electrons) to kinetic simulation (Hybrid II).  The hybrid

simulation is well behaved, but the kinetic simulation shows anomalous growth.  This

suggests that misrepresentation of the electron kinetic resonant layers is fatal.
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3D Slab Hybrid II & GEM Simulations Without/With Kinetic Electrons     

• 3D Slab ITG simulations with 32x32x32 grid, β=2.5x10-3, η i=5, tor=0, mi/me=400,

comparing Hybrid simulation (fluid electrons) to kinetic simulation (GEM, drift-kinetic

electrons).  Both simulations behave, but disagree significantly (particularly fluxes),

suggesting that non-adiabatic electron response near rational surfaces is important.
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A Kinetic Electron Closures for Electromagnetic Simulation -- Summary         

•  The Hybrid II kinetic closure works very well for systems without magnetic
shear for βm mi e/ >1 in simulations of shear-Alfvén waves and   
electromagnetic drift-wave and ITG instabilities with drift-kinetic electrons
(two-dimensional, unsheared slab).

•  Hybrid II sheared-slab and toroidal simulations with mode rational surfaces fail
because the algorithm does not give correct physics in electron resonance
layers.  (We expect that the very similar Lin-Chen algorithm would have the
same difficulties.)

•  The more direct GEM δf PIC gyrokinetic Vlasov-Maxwell algorithm of Y. Chen
et al. can resolve electron resonances and does not have the same difficulties.
The continuum Vlasov-Maxwell codes GS2 and GYRO have not reported any
difficulties of this kind.


