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Kinetic Electron Closures for Electromagnetic Simulation -- Outline            

1. A practical algorithm for particle simulation of electromagnetic drift-wave
turbulence and transport with kinetic ions and electrons

2. Examples – Simulations of kinetic shear Alfvén waves, and collisionless drift
wave and ion-temperature-gradient instabilities at finite β in a two-dimensional
unsheared slab

3. Extension to toroidal flux-tube algorithm

4. Summary --

Successful particle simulations of shear-Alfvén waves and   
electromagnetic drift-wave and ITG instabilities with kinetic electrons for

mi / me > 1 (hot core plasmas) in slab.  Toroidal code being debugged.

Related work within the SciDAC Plasma Microturbulence Project: continuum
methods -- GS2 by W. Dorland, et al., and GYRO by Waltz and Candy; particle
methods -- Z. Lin and L. Chen, W. Lee.
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How to Accommodate mi/me>>1 ? -- Hybrid II Electromagnetic Algorithm       

• Extend the “massless” electron hybrid model of Parker, et al. and P. Snyder
(Ph.D. thesis, Princeton U., 1999) to include drift-kinetic electrons.

• Consider the modified electron momentum equation (Ohm’s law) in slab
geometry:

  en0e
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E ⋅ ˆ b (0) = −∇||P||e +
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constant, ne
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K  =electron fluid density, ne
K = d 3vhe∫  is  the split-

weight f  kinetic increment, and ne = total perturbed density consistent with
moment of split-weight electron distribution function (like Lin and Chen, 2001):
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• Use Ohm’s law to advance A|| ,   
A||

c t = (
r 
E + ∇ ) ⋅ ˆ b (0) = ...
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Hybrid II Electromagnetic Algorithm (cont’d)                                            

• With updated A|| use Ampere’s law to determine parallel electron current:

||e = n0eu||e = c2

4 e ∇⊥
2 A||

c + ||i, where ||i is the gyrokinetic parallel ion current.

 • Use the electron continuity equation to advance the total electron density:

  
ne

t + n0e(
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B (0) +
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B ⊥) ⋅ ∇ u||e
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v E×B ⋅∇(ne

eq + ne) = 0

(assumes no magnetic curvature)

• Determine the electric potential   from the quasineutrality relation using the
updated electron and gyrokinetic ion densities

• Advance the gyrokinetic ions and the drift-kinetic electrons with same t.

• From drift-kinetic equation for electrons with split-weights (after cancellations),
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using | ne
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(0) |<<1 as an expansion parameter.
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Hybrid II f Algorithm – Improved Shear Alfvén-Wave Simulations                     

• Simulations of kinetic shear-Alfvén waves in slab.
Parameters: ky s= π/8, Te=Ti, By/B0=0.01,ρs=2∆y, 32x32 grid, (0,1) mode
 theory - - -   simulation results: o = Re / i  , ∗ = − Im / i  Landau dpg. rate

• No restriction on ωpe∆y/c and results are similar to Z. Lin and L. Chen’s 2001
reported results.  (As emi / me → 0  the algorithm fails and goes unstable.)
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Extended Hybrid II f Algorithm – Collisionless Drift-Wave Slab Simulations   

• f  slab simulations of collisionless drift-wave instability with no magnetic  shear.
Parameters: ky s= π/4, s/Ln= 0.2, Te=Ti, By/B0=0.01, ρs=2∆y, 16x16 grid, and (0,1) mode,
theory (J. Cummings Ph.D. thesis) - - -,
o= standard f  simulation,        ∗ = extended Hybrid II code with kinetic electrons.

• The Hybrid II algorithm gives good results for mi me >1 and any skin depth, while the
standard f  simulation fails except for mi me ≤ 1 and y<c/ pe.
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Hybrid II Code – Slab ITG Instability Accurate for mi/me>1                          

• 2D Hybrid II simulations of shearless ITG accurate for mi me >1
and no constraint on the skin depth, i.e., c/ pe  relative to the cell size x.
Accommodates finite e.

• 2D slab simulations with no shear, =0.01, Te=Ti, i = e=4, s/Ln=0.1, e/ pe=1,
mi/me=1836, s=2∆x, 32×32 grid.  Frequency and growth rates for the (0,1)

mode (ky s ≈ / 8) vs. e =( pe∆x/ c)
2
( s/ x)

2
(me/mi)( pe/ e)

2

theory (- - -) (J. Cummings, Ph.D. Thesis, 1995) (±10% error bars in obs. Re ω)
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Hybrid II Code – Shear-Alfvén Instability for mi/me<1                           

• Consider the consequences of the explicit backward differencing of the inertia
term in the Ohm’s law, which leads to a numerical instability at low :

  en0e
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• A heuristic stability analysis yields the following dispersion relation for shear-
Alfvén waves:

( −1 + pe
2 / k⊥

2c2 )( −1)2 / 4 = h
2∆t2 / 4,... ≡ exp(−i ∆t)

• Limits---
Electrostatic:  pe

2 / k⊥
2c2 = ( emi / me ) /k⊥

2
s
2 << 1  → =1/(1 ± h∆t)

     |λ|>1 instability !!
Electromagnetic: pe
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2
s
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stability with ∆t / 2 = ± 1
2 k||vA∆t(1− / 2) − i (1

2 k||vA∆t)2, ≡ k⊥
2 c2 / pe

2 << 1

General dispersion relation is a cubic (for a cold plasma), and there is
numerical stability for pe

2 / k⊥
2c2 = ( emi / me ) /k⊥

2
s
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Hybrid II Code – Implicit Solution of u||e to Improve Numerical Stability          

• If we Introduce implicit time differencing of u||e in the electron inertia term in
Ohm’s law, then

  en0e
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• Next solve for A||
n+1 in terms of u||e

n+1
 and substitute into Ampere’s law to obtain

an elliptic equation for u||e
n+1

(−∇⊥
2 + pe

2 / c2 )u||e
n+1 = −∇⊥

2 (...)n

• We would expect this modification of the hybrid algorithm to have improved
numerical stability for smaller values of pe

2 / k⊥
2c2 = ( emi / me ) /k⊥

2
s
2. How much

smaller?

• However, the hybrid algorithm will remain poorly posed as → 0 because of
the presence of A|| and use of Ampere’s law which becomes 0=0.
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Toroidal Flux-tube Implementation of the Hybrid II Algorithm                   

• Determine the parallel electric field from the modified electron momentum

equation (Ohm’s law) including toroidicity (ref: P. Snyder and G. Hammett)

  en0e
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E ⋅ ˆ b (0) = −∇||P||e +

r 
B ⊥
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where  ∇||P||e = ∇||P||e
(0) + T||e

(0)∇||( ne − ne
K ) + n0e∇|| T||e with ∇||(T||e

eq + T||e) = 0 .

• Use Ohm’s law to advance A|| ,   
A||

c t = (
r 
E + ∇ ) ⋅ ˆ b (0) = ...

• With the updated A|| use Ampere’s law to determine parallel electron flux:

||e = n0eu||e = c2

4 e ∇⊥
2 A||

c + ||i, where ||i is the gyrokinetic parallel ion current.

 • Use the electron continuity equation to advance the total electron density:
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t + n0e(
r 
B (0) +

r 
B ⊥) ⋅ ∇ u||e

B + r 
v E×B ⋅∇ne

  
+ 1

me e B2 (
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B × ∇B) ⋅∇(1

2 P⊥e + P||e) + 2n0e

B3 (
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Hybrid II Toroidal Electromagnetic Algorithm (cont’d)                                            

• Determine the electric potential   from the quasineutrality relation using the
updated electron and gyrokinetic ion densities:

∇2 − ( − ˜ )

D
2 = 4 e n i − ne( )

• Advance the gyrokinetic ions and the drift-kinetic electrons including the

toroidal drifts:   
r 
v gs = v||

ˆ b + r 
v E×B + r 

v ds ,      
r 
v ds = v||

2 +v⊥
2 / 2

sB
2

r 
B × ∇B  ,     s ≡ qsB0 / msc

and mirroring.

  ̇ v || = (qs / ms ) ˆ b ⋅
r 
E − ( s / ms ) ˆ b ⋅ ∇B + v|| ( ˆ b ⋅∇ ˆ b ) ⋅ r 

v E× B

• From drift-kinetic equation for electrons with split-weights (after cancellations)

  
d
dt wi

e = ( e − ne) ˆ x ⋅(r v E× B + v||
ˆ b ) − r 

v de ⋅∇ ne / n0e +
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  +v||( ˆ b (0) ⋅ ∇ln B)(1
2 p⊥e − p||e) / (n0eTe
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v E×B ⋅( ||

ˆ b ⋅∇ ˆ b + 1
2 ⊥∇ ln B) /Te
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  +(n0eme eB2 )(
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2 p⊥e) + (2c / B3)(
r 
B × ∇B) ⋅∇

• Use flux-tube coordinates:  x=r-r0,  y=( r0/q0)(qθ-ζ),  z=q0R0θ
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Initial Comparison Run of Toroidal Hybrid II and GEM Codes                              

• Toroidal ITG simulations with 32x32x32 grid, β=5x10-4, ηι=3.5, q0=1.4, kinetic electrons

and ions, mi/me=1837, comparing GEM (conventional low-β code) to toroidal Hybrid II

preliminary results.  Toroidal Hybrid II is being debugged.

  

   


